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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

By ToeEopORE THEODORSEN

SUMMARY

The aerodynamic forces on an oscillating airfoil or
airfoil-aileron combination of three independent degrees
of freedom have been determined. The problem resolres
itself into the solution of certain definite integrals, which
have been identified as Bessel functions of the first and
second kind and of zero and first order. The theory,
being based on potential flow and the Kutta condition,
is fundamentally equirvalent to the conventional wing-
section theory relating to the steady case.

The air forces being known, the mechanism of aergdy-
namic instability has been analyzed in detail.  An eract
solution, involving potential flow and the adoption of the
Kutta condition, has been arrived at.  The solution is of
a simple form and is expressed by means of an auxiliary
parameter k. The mathematical treatment also provides
a convenient cyclic arrangement permitting a uniform
treatment of all subcases of two degrees of freedom. The
Autter velocity, defined as the air velocity at which flutter
starts, and which is treated as the unknown quantity, is
determined as a function of a certain ratio of the fre-
quencies in the separate degrees of freedom for any magni-
tudes and combinations of the airfoil-aileron parameters.

For those interested solely or particularly in the numer:-
cal solutions Appendiz I has been prepared. The rou-
tine procedure in solving numerical examples is put
down detached from the theoretical background of the
paper. It firstis necessary to determine a certain n umber
of constants pertaining to the case, then to perform a Jew
routine caleulations as indicated. The result is readily
obtained in the form of a plot of flutter velocity against
frequency for any values of the other paramelers chosen.
The numerical work of calculating the constants is sim-
plified by referring to a number of tables, which are in-
cluded in Appendiz I. A number of illustrative examples
and experimental results are given in Appendiz I1.

INTRODUCTION

It has been known that a wing or wing-aileron struc-
turally restrained to a certain position of equilibrium
becomes unstable under certain conditions. At least
two degrees of freedom are required to create a con-
dition of instability, as it can be shown that vibrations

of a single degree of freedom would be damped out by
the air forces. The air forces, defined as the forces due
to the air pressure acting on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstationary potential flow. A wing-
section theory and, by analogy, a wing theory shall be
thus developed that applies to the case of oscillatory
motion, not only of the wing as a whole but.also to
that of an aileron. Tt is of considerable importance
that large oscillations may be neglected; in fact, only
infinitely small oscillations about the position of
equilibrium need be considered. Large oscillations
are of no interest since the sole attempt is to specify
one or more conditions of instability. Indeed, no
particular type or shape of airfoil shall be of concern,
the treatment being restricted to primary effects. The
differentia! equations for the several degrees of freedom
will be put down. Each of these equations contains a
statement regarding the equilibrium of a system of
forces. The forces are of three kinds: (1) The inertia
forces, (2) the restraining forces, and (3) the air forces.

There is presumably no necessity of solving a general
case of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applying to the
case of unstable equilibrium. This restriction is par-
ticularly important as the expressions for the air force
developed for oscillatory motion can thus be employed.
Imagine a case that is unstable to a very slight degree;
the amplitudes will then increase very slowly and the
expressions developed for the air forces will be appli-
cable. It is of interest simply to know under what
circumstances this condition may obtain and cases in
which the amplitudes are decreasing or increasing at a
finite rate need not be treated or specified. Although
it is possible to treat the latter cases, they are of no
concern in the present problem. Nor is the internal
or solid friction of the structure of primary concern.
The fortunate situation exists that the effect of the
solid friction is favorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, as this case constitutes a sort of lower
limit, which it is not always desirable to exceed.
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Owing to the rather extensive field covered in the
paper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements.  In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These potentials
are treated in two classes: The noncirculating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as ““circulatory”

potentials. The magnitude of the circulation for an
oscillating  wing-aileron 15 determined next. The
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Fiiure 1. Conformal representation of the wing profile by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of motion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The solution
of the problem of determining the flutter speed is
finally given in the form of an equation expressing
relationship between the various parameters.  The
three subeases of two degrees of freedom are treated
in detail.

The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for future investi-
gations.'  Such secondury effects are: The effects of a
finite span, of section shape, of deviations from poten-
tial flow, ineluding also modifications of results to
include twisting and hending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix II similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by a supporting mechaniam, with external springs
maintaining the equilibrium positions of wing or wing-
aileron. The experimental work was carried on
largely to verify the general shape of and the approxi-
mate magnitudes involved in the theorctically pre-
dicted response charneteristies.  As the present report
1z lunited to the mathematical aspects of the flutter
probleny, specific reconunendations in regard to prac-
tical applications are not given in this paper.

P'Phe efTeet of internul friction is in some cses essential; this subject will be
contained 1n 4 subsequent paper,
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VELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We shail proceed to calculate the various velocity
potentials due to position and veloeity of the individ-
ual parts in the whole of the wing-nileron system.
Let us temporarily represent the wing by a circle (fig.
). The potential of a souree ¢ at the origin is given
by

€ F e
¢=1 log (= o)

For a sourve e at (o, ) on the circle

¢=f;r log {(z--r)*+ (- )%

Putting a double source 2¢ nt (r,y) and a double
negative source —2eat (ry,--y,) we obtain for the flow
around the circle
(-"jf))z* (7?/7.7/1)?

‘o
5 log -—
29 8

tro-n )5y )t

¢ =

The function ¢ on the circle gives directly the sur-
face potential of a straight line pg, the projection of the
circle on the horizontal diameter. (See fig. 1.)
this case =1 —s* and ¢ is a function of z only.

We shall need the integrals:

"‘ (oo 4+ Oy — )

In

. log f-"i'*fl)"'*‘(!/+y;)"(lf‘ =2(r—) log N=241—2* cos™ ¢

and
‘ Lo oy n)’ . T
1. log G T y”,(.lyf()(l.f]— —yl=cyT
~cosTle(r—2e) 1 —2*-
.1
where N=

The location of the center of gravity of the wing-
alleron x, 1= measured from «, the coordinate of the
axis of rotation (fig. 2): rs the location of the center

{0

‘ c.g.of aileron-

Fisuvre 2-—Parameters of the airluil-alleron corabinalion.

of gravity of the aileron is measured from ¢, the coordi-
nate of the hinge; and r, and 4 are the radii of gyration
of the wing-aileron referred to a, and of the aileron
referred to the hinge. The quantities z; and r5 are
“reduced’” values, as defined later in the paper. The
quantities o, r,, ¢, and «y are positive toward the rear
(right), £ 1s the vertieal coordinate of the axis of rota-
tion at @ with respect to a fixed reference frame and is
o positive downward.  The angles a and g ure positive
b cloekwise {right-hand turn).  The wind veloeity # is to
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the right and horizontal.
refers to the direction of v, the aileron angle 8 refers to
the undeflected position and not to the wind direction.
The quantities r, and 73 always occur as squares.
Observe that the leading edge is located at —1, the
trailing edge at -+ 1. The quantities a, ¢, ¥, 73, s,
and 73, which are repeatedly used in the following
treatment, are all dimensionless with the half chord b
as reference unit.

The effect of a flap bent down at an angle 8 (see fig.
2) is seen to give rise to a function ¢ obtained by sub-
stituting —28b for ¢; hence

v bl T N v
¢d=%—[\/1 —rfcosle-- (x-¢) log N]

To obtain the effect of the flap going down at an
angular velocity 8, we put e== — (2;—c)8b* wid et
;= ?%[wr"r:ézv'l “ritcosTlele—Ye) V1 —ua

— (x—¢)? log N]

To obtain the effect of an angle «a of the entire air-,

foil, we put ¢= -1 in the expression for ¢,, hence

¢, =vab NI
To depiet the airfoil in downward motion with a veloe-
ity & (+ down), we need only introduce g’ instead of a.

Thus o

Finally, to describe a rotation around point @ at an
angular velocity &, we notice that this motion may be
taken to consist of a rotation around the leading edge
¢= —1 at an angular velocity & plus a vertieal motion
with a velocity — &(1 +a)b. Then

(b

The following tables give in succession the veloeity

potentials and a set of integrals ? with associated con-
stants, which we will need in the calculation of the sir
forces and moments.

VELOCITY POTENTIALS

pa—rvaby1—2*

gi— hbyT=7

Pa= db(%z a) V1

o= ;Z?Bb[\c“‘l —eosle— (z—¢) log N|

ps= L BRVI— VT -2+ (0 20) V1= cose
T
- (r=e)? log N
where Nl er- VI— 2yl
r—c¢

2 3ome of the more diflicult integral evalualions are viven in Appendiy {1,

The angle (of attack) a |

LT

INTEGRALS

' +1
.[ Gatlr *-gua'/} f_l w',(l.r=gl‘a7r

g b +1 b
JC eadr = - §/lT4 f-] m(]r:g}“f

" + T
J eadr  ab*T, r eallr = — & "7%
¢ J=1 =
[" 1 b s e = - Dogr
J. @alr = ;Zvﬂ_sz 5 . egdar = - 21,6 A

" bt ., Yy b, .
j eale - — 5 BT, j e - 24T,

1 b +1 b
[ ealr—c)dr=—zral} f ¢a(z--c)dr = — svacr
¢ 2 J-1 2

! b
ﬁ eilr -e)ydr= ~‘2h11

+1 b,
f ople —eydr=— Sher
1 2

1 +1
[ eolr -c)dxr=ab*Ts [ 1 ealr—co)dr=ab*Tyr

1 b, +1 . b ..
[c esle —¢)do= —2-1}1';31} .ﬁl es(r—c)dr= — Qv[ﬂg

t 2, +1 25777
[ ealr c)(lJr='—2b—ﬂﬁ’1'a ﬁ] eilr—o)dxr= —gﬁl’

CONSTANTS

po L
Ti= =3y =@ +¢) +c cos™le

T, ¢(1-¢%)- y’lifc?(l +c?)eos et c(cose)?
1= - (é F cz> (cos™'e)2+ ic V1—c* cos e (T +2¢%)
1 e
- g(l - %) (5¢*+ 4)
T, -- —cos7leteql —¢?
T, - —(1—¢%) — (cos™'e)?+ 2e4/1 — ¢ cos™'c
=T,
(L + c") cos”le+ 10 1= c2(7+2¢%
: sTe g0
Ty= — :15 V12 (@2e+ D) +ecos!e

W L1/ - 2 , 1 .

I.'.=§|:§(\s‘l*(‘z> +a1'4]=§(—p+a14)
1 —

where P=—3 1/1—61)1

Tw=+1—¢*4 cos7l¢

Th=cosle(l—2e)+ {i—¢2—¢)

Te=+1=c? (2+¢)—cos™ ¢ (24 1)

T13=$[_T7_‘ {¢-—-a) Tll

! +lac

Tu= 16, 2

FORCES AND MOMENTS

The velocity potentials being known, we are able to
calculate local pressures and by integration to obtain
the forces and moments acting on the airfoil and
aileron.
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Employing the extended Bernoulli Theorem for un- !

steady flow, the local pressure is, except for a constant
Oy
2t
where w is the local velomty and ¢ the velocity poten-

u»?
DPr=—»p

. o 0 .
Substituting w:v+5£ we obtain

ultimately for the pressure difference between the
upper and lower surface at x

p=—20(v 32+ 57)
where v is the constant velocity of the fluid relative to

the airfoil at infinity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap

tial at the point.

Ficure 3.—Conformal representation of the wing profile with reference to the
circulatory flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

'1
P [

Mo=—. b*[ (e *c)d1+"prJ ods
M, = ~2pb"f olr—c)dr+ ‘_’pz‘bJ 1 edr
J -

+1 \
-- 2pb? f_l ¢{c—a)de
Or, on introducing the individual velocity potentials
from page 5,

P=—pb?{ena+ ok — brad—oeT,8— bT\8] I |

S SN
f\f,g:—pbsl:*l']la—l.fb+‘2113ba—;1*]g}3—1r

TabB]
+ prb? [ —oTwa— T+ 2T)ba — }rvm - }r szB]
Y [waa — @1+ T bea+ 2T+ L Tts
1,, 1 A T .
+ (; T, T2> bed — LB+ Tk leh] a1

M, - "pbzl:*vrl‘za+ rr(£+(l2)(/”"i'+/ T,8+ {T1"T>
~(e—a) Ty} bBo+ {— T ~a) b8
*bar}i—'rl‘h]

(111 '
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YELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces and moments due to a
surface of discontinuity of strength U extending along
the positive z axis from the wing to infinity. The
velocity potential of the flow around the circle (fig. 3)
resulting from the vortex element — Al at (X, 0) is

Al T T
¢r= ’2; l:tnn“X_lx — tﬂn_l‘;}z
‘Yo
1 v \r
( -~ Ag))
(Xo+»%)X+ Y
Ao

where (X, Y) are the coordinates of the variable
and X, is the coordinate of — ATI' on the r axis.

Al
52 tan~!
T

‘\"2 —

Introducing X, + ‘% =2r,

or Xg=uo+ 17— 1 on the £ axis
and X'=r and ¥=4/1—+* on the circle
the equation becomes

AT W12V -1
Fin™ T 9n tan 1—zxx,

This expression- gives the clockwise circulation

around the airfoil due to the element —AI' at =,
. . O¢ d¢
We have: p - Ot+vb.t>

But, since the element — AT will now be regarded as
moving to the right relative to the airfoil with a
velocity ¢

Oy _ b‘pr
ot Ory
0@
Ditd = — Dap
Hence, p 2pu br(,
Further
2n Q¢
AT Or
and
1 Xo — r
T O s 1
:’E .%: _——_1‘(1 IJ‘Q) /To -1 ‘Io (1 —xr0)*
AT or, L+ (=2 (x 1)
(1 —rry)?
- a1
{rg— 1)
By addition:
O¢ | Op AT rntr
or OIQ 2r \/1*1‘2\[]'0‘—1
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To obtain the force on the aileron, we need the

integral
AT 2o+ 177
f oz 0x>d - "rf Vi Iy
T — 27
- él 20 cos~'z+ ‘/_--I—:l
T yrd—1 Ved—11

_Ar Ty
i

) I
LTy

s“‘l 2
~(‘os"c+l,r - :I
1 -\“1‘02“1

Thus, for the force on the aileron

T x 1 —
AP, = <f/ T cosTle+ —— 2) or
T \yzy—1 NEE
" Al Ty . 5
AP, = —prb e (coq c—+1—¢)
g N/Iﬂ

rot+ 1 ——
+ \/ iVl Cil
Integrated, with AT = Udx,

Py=- *[(COS“C* V1—¢ )f 1/
- V/j:;-zf’" 2ot 1 ]
1

for c= —1 we obtain the expression for I’, the force
on the whole airfoil

.
x
:*””’f e
L Azt —

Since U is considered stationary with respect to the
fluid elements

(/d]’g

Iv)

dx,

U=1{(wt—z,)

where ¢ is the time since the beginning of the motion.
U is thus a function of the distance from the location
of the first vortex element or, referred to a system
moving with the fluid, U is stationary in value.
Similarly we obtain for the moment on the aileron

AT 1 -
f (O¢p+ *(‘)(IJ‘=.§'I‘f fvi» —
“TJe \“
AT —x
= ‘)7|'_‘1-2 1[]‘0-\1_I + ~’

1 L
+<§—roc)cos x]‘

Al 1 c N

= u. + 2 )41 —¢?

o \/Inz— 1 [(1’0 2 €) ¢

+ %(1 - 23900) cos‘lc]

f ({ITCT‘— ¢ ('os"c)

! ]
(cos~le—eyT—¢?) J

Finally

J[g* —plb2

/Io—l l—c(1+2)
—cos™ c(c+2) \/I°+1(cos ‘c~cxlfc)i|

Putting AT = Udr, and integrating

I*C (1 +2>
~ eog-! =
cos c(c+ 2)]]; wlo _1

+ (cose— ¢y/T— ) %f: \/izj; Udfo:l )

Further, for the moment on the entire airfoil around a

f+'(°“’+ )(f adr=—2 )4

pzb

M=

Udzx,

’71’ \/.r(,‘ 1[<IO+

+(1—' a) cos™! I:IH— AT (1 ra)
2 £ E 1 ‘)7r —y.i'g - 1 of
1
S =y
[ o= — ppb?AT - o=
and AM, pvb?AT Vad =i
Integrated, this becomes
” ) —Xgd
M,.= —plb2 /71 Uda,
1
f + 5o T (L+ Udr
—— 0
i‘/ru -1 —1

*plbzf {2\/;:+1 ((H 1>

THE MAGNITUDE OF THE CIRCULATION

]deo (V1)

The magnitude of the circulation is determined by
the Kutta condition, which requires that no infinite
velocities exist at the trailing edge,
or,at z=1

a(«’r* + it pat est @i) = finite

Introducing the values of ¢, ete. from page 5 and
¢ from gi page 6 gives the important relation:

‘1_.
21I']

\I0+ 1
V/Io

Ldrg—baTh+b(——a>

T]n ﬁ+ lel (VYII)
This relation must be satisfied to comply with the
kutta condition, which states that the flow shall leave
the airfoil at the trailing edge.
It is observed that the relation reduces to that of the
Kutta condition for stationary flow on putting ry=
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and in subsequence omitting the variable parameters
&, 8, and .

Let us write

f Vot A L sy vact it b(——1>

T,
)“B -

[“‘ B+ b

Introduced in (I1V)

P=—2700b@Q '!:'

= It
.jl '\/Io‘ 1 Lz,
from (V)

M= —2p0d* (\V‘Vl :Ei(l +g)—(~os“ c(c +}>)X

j —7~—f." L'(Lr‘. .
L — +;j(ms" ¢ cv“l_*:-c-"’) Q

J \'/"‘ Lz,

[ A T
Lol . |
£ 8 e 16 20 24 28 32 36 40
L7k

[}
~ .
N

1
FIGURE 4.--The functions ¥ and @ against T

and from (V1)

M, = —27peh?* Q
Introducing
( L
J/,’_(!fll d
J1 ‘\“ sy 1 e
we obtain finally
P = —=2p0bx(’Q (VII1)

M= —2pvb? [({i 5?"(1 + %)—(‘os“ c(c + %))C

1 —
+q(cos™ e eyl (-r)]Q: b (T C- ToQ  (1X)

M, 27rpz-bf[(u + é)()— é](} (X)
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where @ is given above and C= (k) will be treated in
the following section.
YALUE OF THE FUNCTION C (k)
&
. , ik Tzt
Put U= [ (" o) ]

where s =it (s— =), the distance from the first vortex
element to the airfoil, and & a positive constant deter-

mining the wave length,
then

(XBH

These integrals are known, see next part, formulas

(XIV)—(XVIID) and we obtain?

- J,“rl ), CJ 0y
Cly= — Sritiy
- J 13)71“1..7";]0 (]1+)0)+ (Y, =dJy
=_(‘J14’7‘Y1)[ (Jl"T Yo) — Jn”

(']1“1‘ ) f+ () 1 Ju)z
=J1 (Jy+ Yo + Y (Y, *J(L)
Y T (- oy
YiJi+ Yo -4~y

- (Ji+ Yo)y'k()vl";]o-)l—=14+l(l

where
v_Jl ('Jl + )’0) + )YI(Y| — Jn) -
SO AR (XID)
G= - Vidos gy ; (XIID)

i+ Yo+ () 1 o)t

These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

graphically against the argument i in figure 4.

SOLUTION OF THE DEFINITE INTEGRALS IN (' BY MEANS OF BESSEL
FUNCTIONS

We have

K, (z)= f eF oM cosh it dt
4l

(Formula (34}, p. 51— Gray, Mathews
& MacRobert: Treatise on Bessel

Functions. London, 1922)
where
inr

K,(ty=¢e? G, (it)

(Eq. (28), sec. 3, p. 23, samne reference)

G- T+ [log2-v+ Tl

Yo to) =5 Yooy + (log 2— ) J, (o)

and

but

(where Y,(r) is from N. Nielsen:
Handbuch der Theorie der Cylinder-
funktionen. Leipzig, 1904).

I

3 This mmy al<o bw expressed in lankel functions, €= TTo+i e
s
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Thus,
Golx) -~ S Vale) ida(@)]
We have

- . © @ glkT
AO ( - l]x”) f elk cosbt (1 = f —jim= (].II
e Jl

\‘I‘*l
or
T Yn ) +i" Ju *) - { cos Lg‘(lf y [ 'sllrl ’lqdr
| 1 -1
Thus,
II‘ cos krdr _ _g Yo k) (XIV)
[ B g (XV)
N
Further,
LI w i T
K, (- tky = ‘ eheosht eoshitdt - f i; Lﬁ
JUoy L -1
iG k)= i 5 Y ) =5 (R)
o
= f - == (cos kx i ¢ sin k) du
J1 —\.I' 1
Thus,
[. " :"I‘J;" -~ Ttk (XVI)
ﬁ‘”{ z:;{‘fii'~’= S (XVIL)

TOTAL AERODYNAMIC FORCES AND MOMENTS
TOTAL FORCE

I'rom equations (I) and (VIII) we obtain
P = pb¥erat h— xbai — oT3— T.b5)
- Lrp?‘b(,'{ va+ i+ b(“lz - a)d + %Tml‘ﬁ

‘, Tu8 (XVIID)

TOTAL MOMBNTS

Fromn equations (I1) and (IX) we obtain similurly

My= — pb’[{ o, T T,<u 2) obé 2T b

1, m oo
+;U'B(js"1‘41m) l'BI u_" 138

- le};] — bt T, { vad b+ b( % a)d

1, 1,
T+ Tf bgrlnﬁ‘

J XIX)

AND THE MECHANISM OF FLUTTER
From equations (I11) and (X)

M. 'pbzl: ( 5 a)luu w( +(1)

(Tt T8
+ ('1'1 Ty (e
- (T, +(c—ayTy )b‘fls' - a,rbh’]

) AV T2 EAY
+ 2pvb-7r<a + 5)0-; vt i+ 8- @)

1. |
+;; lol'ﬁ'%bg;r]nﬁ}

DIFFERENTIAL EQUATIONS OF MOTION

o, Lo, -
(1,)I4~r2—1“ b

(XX)

Expressing the equilibrium of the moments about «
of the entire airfoil, of the moments on the aileron
about ¢, and of the vertical forces, we obtain, respec-
tively, the following three equations:

o Lo —IsB—ble—a)SsB— Suhi— als+ M= 0
B: ~Isf— Isa—b(c—a)aSs— hSs— BCs+ Ms=0
ks —hM—&S.—BSs—hCr+ P=0

Rearranged:

o al.+ BUs+blec—a)Ss) 4 ES 4 all,—M.=0
8: a(Is+b(c—a)Sy) + Bls+ hS + 80— Msz==0
he &@Sa+ BSs + AM+hC,—P =0

The constants are defined as follows:

o, mass of air per unit of volume.

b, half chord of wing.

M, mass of wing per unit of length.

Sa,Ss static moments of wing (in slugs-feet) per

unit length of wing-aileron and aileron,
respectively. The former is referred to
the axis a; the latter, to the hinge c.

1.1, moments of inertin per unit length of
wing-aileron and aileron about e and ¢,
respectively.

C., torsional stiffness of wing around a, cor-
responding to unit length.

Cs, torsional stiffness of aileron around ¢, cor-
responding to unit length.

C., stiffness of wing in deflection, correspond-
ing to unit length.

DEFINITION OF PARAMETERS USED IN EQUATIONS
7rpb . . .
K= gg0 the ratio of the mass of a cylinder of air of

a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span.
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T !

V= \/il[‘;)gv the radius of gyvration divided by b.
Sa . . .
Ta= 11 the center of gravity distance of the wing |
from a, divided by b.

Wa = frequency of torsional vibration

»\/QFJ the

around a.

I . . .
r,«j:\/jii-zv reduced radius of gyration of aileron

divided by b, that is, the radius at
which the entire mass of the airfoil
would have to be concentrated to give
thie moment of inertia of the aileron 7.

I

+ ,Z‘fl(T+T) }( _ >l_‘),( +
ﬁkbzﬂ,a 10) T Ta (le-haz

Ty ’ r
8] Gt B =TT [ E (s ar )+ SR (g a)ar g

B a it eman =m0 e e (p- -y )y 2 (s
1 ¢
(©) a(x;xa>+a§x+é 15—%T.K)—B%T.K SR GRS

vCk) 1‘

)K_

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable
equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sine functions of the distance s or, in complex

a1 o ..
form with s an auxiliary parameter, giving the

ratio of the wave length to 2 times the half chord b:

ES
e

= Bo"i (k%‘L‘"l)

i (A-" ; )
te
h=hee b

and

where s is the distance from the airfoil to the first

ds ‘
vortex element, Q=" and e, and @, are phase angles .

of g and h with respect to a.
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| ment of each variable, respectively.

AERONATUTICS

S . .
Iy \[db’ reduced center of gravity distance from ¢.
[Cs . _— .
ws ) frequency of torsional vibration of aileron
BEE
around e.
[Cy o .
wy = frequency of wing in deflection.

\/ M

FINAL EQUATIONS IN NONDIMENSIONAL FORM

On introducing the quantities M,, M;s and P,
replacing Ty and "7}; from page 5, and reducing to
nondimensional form, we obtain the following system

of equations:
2)7:]

h+( >a+T10;)ﬁ+1)”B:|”0

1 ., 1 ..
- ’7r2"73>_§;r2 ﬁqun‘gK

=0

Cy

h+(2 )nm‘— -~‘9”-3+ 7—“;3]*0

Having introduced these quantities in our system of
3 2
equations, we shall divide through by (%A) 3

We observe that the velocity ¢ is then contained in
only one term of each equation. We shall consider
this term containing » as the unknown parameter Q.X.
To distinguish terms containing X we shall employ a
bar; terms without bars do not contain X.

We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to the coeflicients in the first equation
not containing C(k) or X, B to similar coefficients

' of the second equation, and € to those in the third
" equation.

Let the first subsecript o refer to the first
variable «, the subscript g to the second, and / to the
third. Let the second subseripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
A, thus refers
to the coeflicient in the first equation associated with
the second derivative of « and not containing C(k) or
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X; Cys to the constant in the third equation attached to
h, etc.  These coefficients ¢ are as follows:

2 (1
Au=""4 (‘8 + a2>

A= (é — a)
Aia=0

2 s Al o
BT g (2o )
K K ™

m

1 1
4‘132=;[—2p_(§—‘0/> T4]

1 .. .
11ﬂ3=;(14+ Fxo)

Ay =

Ap="—-a
AMAO
AM—O

1 / 1
Ba2=;<P"f1_§T4>

B;=0
rs 1
Bﬁx=7‘3_1ﬁT3
1
Br)z:_‘g;i[‘d 11

Bﬂ:&:’_’rlz(Ts‘ TTw)

1
Bhl=?—;rTl
B,,=0
Bi;=0
Co="—ua (=An)
Cy=1
Cu=0

=1 -
Ca=2~ T, (=Ba)

1,

052;_;14
Csu=0
On=1+1

K
Chp=10

+The factor 1 or X is not included in these constants. See the expressions for

k ki
the R's and I's on next page.

MECHANISM OF FLUTTER

The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanishing of a third-order determinant of com-
plex numbers representing the coefficients. The solu-
tion of particular subcases of two degrees of freedom
is given by the minors involving the particular co-
efficients. We shall denote the case torsion-aileron
(o, B) as case 3, aileron-deflection (8, k) as case 2, and
deflection-torsion (h, ) as ease 1. The determinant
form of the solution is given in the major case and in
the three possible subcases, respectively, by:

Roatile, Rog+ils, Ra+ila
D= | Ryutilye, Rog+ilys, Ry tilyn| =0
Rza‘l'ilca; I{cﬁ"}'ilcﬂ; Rch‘i_ilch

and )
M= R"+151“’ IEGB+Z:I“B! = Case 3
Ry i1y, Rig+1lssi
— I B ; ;
M it Fatity 0, Cue?
Tom L i B g =0 o
REAL EQUATIONS IMAGINARY EQUATIONS
Bl e =0 g+ R 1= O
Bl T AL O 10 R 20 O
o~ ot =0 e ¢ o cae:

NoteE.—Terins with bars contain X, terms without hars do not contain X.

The 9 quantities R,., B,s, etc., refer to the real parts
and the 9 quantities f,,, .3, etc., to the imaginary
parts of the coefficients of the 3 variables «, 8, and &
in the 3 equations A, B, C' on page 10. Denoting the
coefficients of &, &, and « in the first equation by p,
q, and r,

. 1 . b b\
R“°+YI““=;[_1)+zqk7+r(Ev> ]

which, separated in real and imaginary parts, gives
the quantities R,. and 7,,. Similarly, the remaining
quantities B and I are obtained. They are all func-
tions of & or C(k). The terms with bars B, R,
and R., are seen to be the only ones containing the
unknown X. The quantities @ and X will be defined
shortly. The quantities B and I are given in the
following list:
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5 N Lo

‘er= -ilay {’"*‘a\+ +(l>[( )(1*1:]‘] (1)
N (U

a+ 2)[:1,1(,,43 k/,\,ﬁ] (2)

3)

1
Rys= -y +Ic7 Ay +

(u +
Ry — By — ]_ UE [(_, - a)u— %1}

- /AT AP B
Boy= B+ “Ha;:-za.\' ,,,AI,_.,/;;[/“(,,,_,/,W] ()

Ruh= 4i‘hl

)

Ry=--Bu - ,{.I" / )
\ VR TY -
Rm - 4al k [( )(1—%1'] (A)

I‘)rxi:*rdl_'k;[ln(’“’glml\;l‘]

Ro=—0Cn+ szm\'—,{_—g(; g

lia= kl:"(a+,) (2 7 J’

(11)

=l

]ﬂd': *[[;r((l 7“2 (T,J‘W*Qk' Tm('y>_4’ldzJ (12)
1M=—}52 rH—};)l" (13)

ATl N1 ]

_k[ﬂ 5= ) LG+ B (14)
L= [ (TuF+2 1106 )+ B | (i5)
L=t lep (16)

Ve Lol oo _
k[ l(’ )ﬁ+k(: +(,ag] (7
A]: (T2 Tuti ) O ] (18)
k_[v (19)

The solution as given by the three-row determinant
shall be written explicitly in X.  We are immediately
able to put down for the general case a cubic equation
in .\ with complex coeflicients and ean easily segregute
the three subcases. The quantity 2 is as before the
value of the determinant, but with the term containing
X missing. The quantities M,,, M,s, and M, are
the minors of the elements in the diagonal squares
aa, b8, and ch, respectively. They are expressed ex-
plicitly in terms of R and I under the subcases treated
in the following paragraphs.

A+ 2.\ A, Ay,
Zj: Aha Ah;rf' Ugl\' Abh =)
Aca A Ao+ 0N

where A,,=R,.+11,. etc.
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[ Complex cubie equation in X

Qa2 NP - (L0 AL+ QA et 20 As) NP

Mo QM Q,,\Imu\ D=0 (XX
Case 3, (o, 3):
Qa2 V2 (Qed s+ 2 A ) N4V, =0 (XXID
Case 2, (3, fi):
Qa0 X4 (AL, H A, N M =0 (XXIID
Case 1, (4, «):

-~hQ \ T ”hAaa Y m’ \ﬁ ‘[r,g—() (XXIV)

o 1 w
e <:d:a>2z.<"::ff>’
S G

and finally

Vo 1/br, w,)
- k\ vk

We ure at liberty to introduce the reference param-
eters «, and r,, and the convention adopted is: w, is
the last w in eyelic order in each of the subcases 3
and 1.

" Wal'n
Then 12,,:( et

\wrulrn'.‘l

2
. . Wel
(use 3, 12a:<—"3’—> and Q3=
wgr
(luse 2, Q4 ( ) and Q,=1
Case 1, Q= zmd Q=1
H

To treat the general case of three degrees of freedom
{equation (XXI1)), it is observed that the resl purt
of the equation is of third degree while the imaginary
part furnishes an cquation of second degree. The
problem is to find values of X satisfying both equa-
tions.  We shall adopt the following procedure: Plot

y"!

W2
) and 9,,,=1, thus for

graphically .Y against llc for both equations. The points

of intersection are the solutions. We are only con-

. . 1 -
cerned with positive values of A and positive values of

A, Observe that we do not huve to solve for k, but
may reverse the process by choosing & numiber of
values of % and solve for X. The plotting of X

. 1 . . .
- against 7 for the second-degree equation is simple

enough, whereas the task of course is somewhat more
laborious for the third-degree equation. However,
the general cuse is of less practical importance than
are the three subcases. The equation simplifies con-
siderably, becoming of second degree in X.
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case (a, 8). The complex
quadratic equations (XXID)-(XXIV) all resolve
themselves into two independent statements, which

we shall for convenience denote ‘Imaginary equa- |

tion’’ and ““Real equation”, the former being of first
and the latter of second degree in XX\ All constants
are to be resolved into their real and imaginary parts,
denoted by an upper index & or I, respectively.

Let M,.=M#® +iM%,, and let similar expressions !

denote M3 and M,
Case 3, (a.8). -Separating equation (XX1I) we obtain.
(1) Tiaginary equation:

]
(ud st Qo) X+ M en=0

N — :“;ﬂjﬁA -
ST Qs+l s
(2) Real equation:

Q0574 (L Rpg+ R ,0) X+ ME =0
Eliminating X we get

Qs (M) — (S Bos+ Qullaa) (Qad s+ Ladaa) Mo
+ME 4 (Qud s+ Qpdua)* =0

By the convention adopted we have in this case:

Wa 2 [ 2
Qu={ 2=} (%),

ws/ \Ts
Arranging the equation in powers of 2, we have:

Q[ — M o (Roglos) + MEenTo5”) 4 Qal (M )*
- A“‘[lch (Rua105+ IﬂaRhﬂ) + 24‘1“”,1,1,,153]
e MR art M* 01007 =0

and Q=1

Wy =W,

But we have
(1‘1[”)2_ ﬂllrh(Raalbﬂ_i" IaaRbﬂ)

= A[’,hllf,,albgflemglba +I£M]I,m—Rbnlas'—RauIbﬂ_RbBIan]
= A“‘\'Ilch (Radlba +.108Rna)

Finally, the equation for Case 3 (o, 8y becomes:
Q2(ME T st — M Ry g) + Qol — M o (Byslpa—t Laahsa)
DMLl nsl + MG — M R a=0 (XXV)
where
M2, =RyuRus— RagRoa— Lial s+ Luslsa
M =Rl s—Roslvat 7 Bos—IaR 0

The remaining cases may be obtained by eyclic
rearrangement:

INSTABILITY AND THE MECHANISM OF FLUTTER

2
Case 2, (8,h) ?) rs? Q=1
h
QMR T2 — MR W)+ — Mo (R d s+ TR 5)
+ 274 Tosl o)+ Mol s — MiR 3 Ls=0 (XX VI)
A’[Raa = Rhglfﬂ, - RMI{C;S_ InSIch + IMI:S
“[rllﬂ T‘[{b,ﬁ](h*l‘)hh[rd—{' ]hﬂl‘)ch— IhnRrS

(22 L
(MRl 02— MR o Lyo) + 0l — Mg (B ool an+ 1 aBan)
A2 MBI L) - MR L — MR AT =0 (NXVIT)
Me=RRe— RaBRo— 1 d st 1ol an
My=R 1,0 Rl it 1aBoe— 1 allan

Equations (XXV), (XXVI), and (XXVII) thus
give the solutions of the cases: torsion-aileron, aileron-
deflection, and deflection-torsion, respectively. The
quantity ¢ may immediately be plotted against

W, = wy, Q=

where

Case 1, (h,a) Q=1

Wy — Wy

where

1 .
¥ for any value of the independent parameters.

The coeflicients in the equations are all given’in terms

* of R and I, which quantities have been defined above.

Routine calculations and graphs giving @ against
% are contuined in Appendix I and Appendix II.

Knowing related values of @ and IIL' X is immediately

i expressed us a function of ¢ by means of the first-

degree equation. The definition of .Y and @ for each
subcase is given above. The eyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subcases.

It shall finally be repeated that the above solutions
represent the border case of unstable equilibrium.
The plot of X against Q gives a boundary curve between
the stable and the unstable regions in the X plane.

It is preferable, however, to plot the quantity }t—) l?

instead of X, since this quantity is proportional to the
square of the flutter speed. The stable area can easily
be identified by inspection as it will contain the axis
11

P :X———O, if the combination is stable for zero velocity.

LLANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTtioNaL ApvIsORY COMMITTEE FOR AERONAUTICS,
LancLey Fieup, Va., May 2, 1934.
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APPENDIX 1

PROCEDURE IN SOLVING

(1) Determine the R’s and I’s, nine of each for a ‘
major case of three degrees of freedom, or those per-
taining to a particular subcase, 4 R’s and 4 I’s.  Refer
to the following for the R’s and I’s involved in each
case:

The numerals 1 to 9 and 11 to 19 are used for con-
venience.

(Major case) Three
degrees of freedom

1 Ree foa 11
2 Ry L 12
3 Ro L, 13
4 R, I 14
5 Ry I 15
6 Ry dw 16
7T Re . 17
8 Ry I 18
9 R Tow 19

(Case.3) Torsional-
atleron (o, B)

1 R L. 11
2 Ry L 12
4 Ry I. 14
5 R Iy 15

(Case 2) Aileron-
deflection (8, k)

5 Ry Is 15
6 R Iy 16
8 Ry Is 18
9 R, I, 19

(Case 1) Deflection-
torsion (h, a)

7 R. l. 17
9 R, I, 19
1 R I, 11
3 R. I 13

It has been found convenient to split the R’s in two

parts R=R’+R’’, the former being independent of |

the argument%. The quantities 7 and R’/ are func-

NUMERICAL EXAMPLES

tions of the two independent parameters a and ¢ only.®
The formulas are given in the following list.

R o= /LF((I r;') )(l*’l\’ (1

R = p L O T 4 (a~ V(16 -11E) @
k <u+ )(: (3)
e
R py= — H{ (1'“(, ‘"'Jmﬁ) W1 6)
R” = ——AI;?;%(,' (6)
R"..~ ,12{ T-a)e “ (7)
R 5= - A ('11.(,~)11(,€) (8)
R”M=-;L_—2(.' 9
Ia(,=~2(u+é>§<é~a>l"+%(]}+é—u (1
o= 1)(r“F “T“,G)—i-‘.’p (12)
+<,2 )7
Lu=—2(a+3)F (13)
o= "E (G aype g6+ H-1-57) A
Where p= -- i (1--¢2)%?
L=z "'/',_,(T,Jw%T.()(;>—T41‘,,§ (15)
Ta="121 (16)
l.=2l(3-a)F+ -G}+1 an
1,5=%[('1.m+ TmG) (18)
o,=2F (19)

+ The quantities / given in the appendix and used in the following calculations

i 1
| gre seen to differ from the I's given in the body of the paper by the factor P It
. may be noticed that this factor drops oul in the first-degree equations.
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Choosing certain values of ¢ and ¢ and employing
the values of the 7”s given by the formulas of the report
(p. 5) orin table I and also using the values of F and
¢ (formulas (XII) and (XIII)) or table IT, we evaluate
the quantities I and R’* for a certain number offllt;
values. The results of this evaluation are given in
tables 111 and IV, which have been worked out for
a=0,—0.2, and—0.4, and for ¢=0.5 and ¢=0. The
range ()le; is from 0 to 40. These tables save the work
of caleulating the I’s and R’’’s for almost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities R’ to

be determined. These, being independent of %, are as

a result easy to obtain. Their values, using the same
system of numbers for identification, and referring to
the definition of the original independent variables on
pages 9 and 10, are given as follows:

' Ta® 1 2
fie na™ T —(Tq%-u) (1)
, ré o we Ty T .
R 5= . {e—u) . + . Fe—a) - (2)
Ra==""+a (3)
R .=same as R 5 4)
2
LI (5)
K "
R/MZ _Ts + l Tl (6)
K ™
R’ .o—=same as R’ ,, )
R’ =same as B’ (8)
O ()

K
Because of the symmetrical arrangement in the
determinant, the 9 quantities, are seen to reduce to
6 quantities to be caleulated. It is very fortunate,
indeed, that all the remaining variables,segregate them-

. . . 1
selves in the 6 values of R’ which are independent of ¥

while the more complicated 7 and R’’ are functions
solely of ¢ and a. In order to solve any problem it is
therefore only necessary to refer to -tables ITT and TV
and then to calculate the 6 values of R’.

The quantities (1) to (9) and (11) to (19) thus

. . . 1 .
having been determined, the plot of @ against ¥ which

constitutes our method of solution, is obtained by
solving the equation af*4-b2+4-¢=0. The constants
a, b, and ¢ are obtained automatically by computation
according to the following scheme:

Case 3
Find products 1.5 2.4 11.15 12.14
Then Mfo=1.5—2.4— (1115~ 12.14)
Find products 1.15 2.14 11.5 12.4

Then M/;,=1.15—2.14+11.5—12.4
and a=MZ%,,(15)?— M’ 4(5.15)
= — M7 ,(2.14+12.4) + M7, (11.15)

C=]\1R¢h(11)2—]‘[1”,(1.11) Find Q,,
Solution: L= — (1511
Solution: = M,
Similarly
Case 2
5.9 6.8 15.19 16.18

Mﬂa,,:.s.g—s.s—%(15.19—1&18)

5.19 6.18 15.9
M,.=5.19—6.18+15.9—16.8
a=M"a(19)!— M4,(9.19)
b= — M, (6.18—16.8) — 2M*,,(15.19)
e=M",(15)2— M7, (5.15)  Find Q5
1 0(19)+15

16.8

X M.
and
Case 1
9.1 7.3 19.11 17.13
ME5=91—-7.3 —~]%2(19.11~ 17.13)
9.11 7.13 19.1 17.3

M"=9.11—7.13+19.1—17.3
(l=ﬂ[“b5(1 1)2—;?\[!95(1.1 1)
b= — M7s(7.13+17.3) + M%,5(19.11)
e=MF,5(19):— M,59.19)  Find @,
1 _e0D+19

‘\’ i )‘[lb,g

2
. Wal
Q, is defined as ( < “) for case 3;
wgl's

2
. r
2 is defined as (w—f) 8) for case 2; and
h

wy z
- for case 1.
Wal'a

Q, is defined as (

. . ok \? .
The quantity }( is K(b; r) by definition.
Since both € and i are calculated for each value of

-,lé, we may plot %2 % directly as a function of 2. This

quantity, which is proportional to the square of the
flutter speed, represents the solution.
We shall sometimes use the square root of the above
i~
4K [l

quantity, viz, % \/%, == and will denote this
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quantity by F, which we shall term the “flutter factor”’
The flutter velocity is consequently obtained as
= F bf"};':_'
YK

- L. . . . bwr
Since F is nondimensional, the quantity —/L-’ must
VK

obviously be a velocity. It is useful to establish the
significance of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

that x=!{?. and that the stiffness in case 1 is given by

2 this reference velocity may be written:

tr= éwJa - //(:" or
VK b\ T
mpretht=C,
The velocity vz is thus the velocity at which the total

force on the airfoil 7prg?2b attacking with an arm g

equals the torsional stiffness C, of the wing. This
statenment means, in ~ase 1, that the reference velocity
used is equal to the *‘divergence” velocity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

1
0p =Ty
3 +a
where @ ranges from 0 to— ;- We may thus express
the flutter velocity as
re=1pl

304

In case 3 the reference velocity has a similar signifi-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a leverage % b equals numeri-

cally the torsional stiffness Cj of the aileron or movable
tail surface.

In case 2, no suitable or useful significance of the
reference velocity is available,

TABLE I.—VALUES OF T

a c=1 e=lg | =0 ' c=-13 e=—1
e | - - |
L0 —0.1250 | —0.6667 | —1.6967 . —3.1416 |
C0 02102 | 15707 ;
0o |- :
0
,,,,,, 0o
. )
) P
0
[}

TABLE I11L.—TABLE OF THE BESSEL FUNCTIONS J,. J,
Yu ¥y AND THE FUNCTIONS F AND @
PORREANES ER 16 ()
(N1 Yo+ Y1—Jog)?
YitA+ YD —Ji(¥i—Jo)
(S Y+ (Y = Jo)t

- Glk=

k Yo i
- - |
10 0. 0557
[ —. 2882
4 —. 0170
2
I
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TABLE III.—VALUES OF R

AND THE MECHANISM OF FLUTTER

23 W oo 1 134 134 2 254 335 5 10 20 40
~0. 01566 —0. 03520{—0. 14205‘} —0. —0.93656 7. 68720 ~~85. 38300| —365. 72000 — 1, 528. 2000
—. 00U81| ~—. 02208 —. (8005 338t —. 58061 4. 854130, ~—51. 42400,  —210. 4900, —917. 3520
—. 00341] —.00767] —. 03084, 125950 ~. 19936 . 58540 = 17. 20670 —73.35520) —305. 9280
—.00452| —. 010201 —. 04175 —. 1&0](}7 —. 9384| — 56223 —. 87212 —1. 43983 —2, 84088 ‘ —38.20650, —172.36360] —T741.7072
. 00OR3) 001454 00674 L 01022 . 6 L01620) ~ 01400 —. 06803 —. 29517 —10. 24590 —52.49020| —241. 3664
006 17‘ . 01388 M&&li 21861 La3u14 . 59494 . #4414l 85 2.25014 17. 80470, 67. 383201 259. 0648
I i ] ' _
0 B 0()22!)‘ L 00510 01932 L6419y . ORHTH 12176 . 12260 12205 ~—. 02900 . —10. 43970 —59 18180, —268, 7236
0| 00505! . 01336 . 0527% . 203251 L31065; L 53062 LT32220 110233 1. 81135 - 10. 14740, 31. 49620| 101. B340
0 -00965; . 02170] ., 08656 . 34361 . 53463 L04336) 134762 2.09190:  3.66913 30. 97980 120. 89760| 475. 2592
e ] i i
0 0] —~. 00125 —, 00345, —. 00783 ~. 02890 - —. 224700 —. 30200 —. 41500 —.60000) —1. 62600] — 2. 64000, —3. 6000
R an ("] =20 0 —. 00075 —. 00207 —.00426] —. 01734 - —. 13482 ~. 18120 24900, —. 35000 —. 97560| 1. 58400| —2. 1600
- 4‘ 0 —. 00201 — 003.'14‘ —. 00502 —. 01003 - —. 03236 —. 04012 —. 056015 —. O66RS] —. 20060 —. 40120 —. 8024
of o o007 .o0214 0042 . O1o4y .1 L 23541 56143 105008  2.549200  11.66330 49.957000  208.7520
o -2 0 00080 00223 . 00503 02027 L1321 2416y S727H)| 1. 05650 2, 57400, 11. 70770 50. 03000, 208. 8500
R —.4 o . 00084 . 00243 . 00523 02106 S13616, 24796 . 58410, 1. 08286 2. 60064 11. 75220 50. 10160 208. 9490
ba | = ; N [ [t S
. K . 000: . 00079 . 00321 02112 . (3878, (924¥| 17296, 1Le2110 8. 22870/ 34. 3850
0.5 —.2 0 . 00013] . OO L 00083, . 00334 2177 . U381 L 09434 17566 A2 1. 92540 8. 24060, 34. 4007
‘ —. 4 0, - 00014 - 00038, 00086 . 00347 02243 L4084 L 09621 17N . 42837 1. 93575 8. 252460 34. 4169
R | [ 0‘ B ()012‘” 00343 00772 05101 12642 30 . 3HR0T 52400 . B2430) Lblus 1 3. 54970 15 351‘.’0‘ 64, 02240 263. 2340
b0 5| %) U 00031 00087 . 00196 . 0078, 03170 . 04980 . 08Y35) 13000 20440) 30'.!4(1‘ . 84970) 3. 85050 14. 56740 89, 3188
R a 0 U‘ S00017| 00047 . 00104] . 00304 L01370) L 0198y L03177 L4125 . 05669, L U8196 . 125n1 L22211 . 36062/ L AYIN
b . 5] &) 0 .00003| .0000% . 0001CI . 00065 022 L 032K . 00506 L00680 L 00934 01350| L 02122 03659 . 05940 LO81U
[t 0 .0L128] .03)1320 0705 28530 1. 17030( 1877100 3.4467C| 5. 12600 8. 22000, 1537450 37.323001 170, 76600 . 44000] 3, 056, 4000
R":a M —.2 ¢ L0178 L 03270; 7362 20684, 1. 21054 1.93540) 3. 538601 5. 24680 .55600‘ 15, 61440 37. 700200 171. 41640! . 496001 3, 057. 8400
N —. 4 0 01228 . 03408] . O7Hfx 308381 1259504 1.99360| 3.630500 5.36760 N 55200, 15.85440) 38.07740) 172 0"»&\0! 33. 652001 3, 059. 2800
R 0| [ON 0 00863 026730 L OGOLN| . 24266 100561 1. SNG4 2 ¥4371 5. XARUN| 15, 48865 30. 54330 6370 . 41300 2, 502. 3470
i .5 : 0 00660 L OI8401 L O4150] 16810 L 6UN50 111453 2. 05320 4926800 U 24438‘ 22. 51400 . 67.300] 444. 86400 1, 831. 990U
R s ’ ) (’)‘ 0‘ . 00259 . 00680 RUEY:U L08TRO, L 20060 291201 L449400 60400 . hii()ﬂ()‘ 1 Z(MKI)‘ 1 386001 3. 25200: &, 28“)0‘ 7. 2000
1 Independent of c. ? [ndependent of a.
TABLE IV.—VALUES OF 1
il |
X
0 Yo % W be 1 1% 124 2 20y F1%) 5 10 20 w0
¢ a
0 0. 25000 0.25255 | 0.25578 | 0.27240 0.44030 { 0. 50050 0. 76750 1.70320 | 2.68450 | 3.61750
Taa . 49131 . 40302 . 50189 . 59472 62794 . 78070 1. 3240 1.80140 | 2.45470
L B1037 L R1086 L8145 LH4LT8 . B5146 . 0030 1. 07300 1, 26400 1. 44630
! 0 . 17805 LITOR5 | L 18218 10433 . 36664 . 57526 131213 [ 2,10476 | 2.85963
0 ~.2 39170 L39278 | 30418 . 40147 . BO4RS - 63002 1.07215 154773 | 2.00065
! -4 - 60541 80567 | . 60614 . H08ST . 64303 . 68475 82313 . 99065 1. 14163
Tag - RS -
° | . 13252 13425 113640 L 14742 . 20514 - 46379 L 65973 1.05124 1. 83524 2. 22869
21297 . 21401 L 21530 . 22191 . 31054 L4173 . 52929 . 76420 1. 12651 1. 47067
20342 L20376 | . 20419 . 20640 32504 . 35466 L 39884 47714 . 60792 71260
—. 51290 —. 60300 L72760 | —. 84570 | —. 94100 | —. 96500
L30774 —. 36180 43656 | —. 50752 | —, 56460 | —. 57
—. 10258 —. 12060 14552 | —. 16914 | —, 18220 | —. 19300
L 3NTIT . 35601 . 34204 27696 L 19172 . 057668 | —. 06980
40119 . 38005 L 37248 35811 20653 . 21469 08265 | —. 04344
.41520 . 39586 . 38506 37617 31671 23798 10744 | =, 01707
I, - | e —
° 07438 07435 07424 07387 07009 . 06874 . 06273 05572 . 04168 01960 | —. 00327
0.5 07663 07661 . 07651 07618 07270 07145 . 06572 05599 . 04548 . 02370 . 00295
LOTBNT L UTHES 07867 07548 - 07529 .U7416 . 06471 06226 L4928 L2779 . 00728
I 0 () 32207 L 32288 L32241 32075 29721 . 26872 23524 . 16806 .05979 | —. 04333
b8 .5 04270 | . 04270 L 04270 04240 03804 . 03386 03080 . 02200 . 00845 | —. 00470
(
I 0 (&) L06K30 | 06540 . DOKR0 .07010 . 07370 07570 08240 . GH080 . 09940 . 11550 . 12440 . 13180
or 5 | 01125 .01126 01133 L01154 L 01214 01247 . 01357 -01496 . 01637 01903 02117 02171
T 1. 50000 | 1, 49808 1. 48544 1. 45520 1. 33860 1. 26260 111940 .Y 46500 . 15840 [—1. 40630 |—3. 369C0 |—5. 23500
lea () | —.2 ) 1,70000 | 1, 60832 1. 68092 1. 66036 1. 55470 1. 48454 1. 35042 1. 24020 1. 04430 73100 L 13264 [—1.06802 | —3. 00460 |—4. 84900
.4 | 190000 | 1 BUS56 1. 89140 1. BR552 1. 77050 170618 1. 58244 1. 48410 1. 31410 99700 L42370 | — 72974 |—2.64020 | —4. 46300
I 0 () | 106830 | 1. 066H0 1. 06600 1. 03580 L Y4900 RO L TH190 60110 . 62840 L 27380 . 21640 [—1.20010 |—2. 78550 |—4. 29530
8 .5 .40220 | . 40100 . 39450 37240 . 20640 . 24640 i . 18510 L07610 | —. 05180 | —. 26030 . 65220 [—1.43520 |—2. M350 |—3. 79010
lea Q] (2) | 100000 | 1. 00120 00740 1. 02580 1.07900 | 1. 10820 1.15760 1. 20600 1. 24800 1. 33000 . 45520 1. 69140 1. 82200 1. 93000

t Independent of ¢.

? Independent of a.
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APPENDIX II

NUMERICAL CALCULATIONS

A number of routine examples have been worked out
to illustrate typical results. A ‘“standard’ case has
been chosen, represented by the following constants:

k=0.1, ¢=0.5, a=—0.4, r,=0.2,

1 1
2 2 —_ .2
ra'=0.25, 2=y 15 = 15

Way ws, wy variable.

We will show the results of & numerical computation
of the three possible subcases in succession.

T

160

L~

T
.
|

i

| ﬁ‘ 1 H ]
2 .3 4 5 &
L7k

1
Figure 5.—Case 3, Torsion-aileron (a, 8): Standard case. -

Showing 1. against &

Case 3, Torsion-aileron («,B8): Figure 5 shows the €,

. 1 . . .
against A relation and figure 6 the final curve

\ 2 2 2
F=x<f Y ) against Sla:<w°r°> =4()(&>
wgrgb wal'g wa
T . T

20 % u\l,,.li,@ 1
16} B R .
- e S | SR

= - [ N S i-

F o+ ‘ . ‘ R 4‘,,, - o
Tl NN
4 :‘ ! T g g NS

I i 1 i
- Lh o S RS
L L J._L/ T
0 20 40 60 80 (00 (20 140 /60 180
N,

Ficure 6, —Case 3. Torsion-aileron (a, #): Standard case.
F agninst Q..

Showing flutter factor

Case 2, Aileron-flexure (B, k): Figure 7 shows the

. 1 . . \?
2; against 7 relation® and figure 8 the final curve x(;ﬂz b)
n

e .2
against Qg ~(E‘Z{,'”) = “].)”( zf)

¢ It is realized that considerable care must he exercised to get these curves reason-
bly accurate,

The heavy line shows the standard case, while the
remaining curves show the effect of a change in the

1

1
— and m

value of 3 to 10

Case 1, Flexure-torsion (h, «): Figure 9 shows again

N
.ot R N —
xp /160 f ‘In'f{/‘m ‘
e P N
()
.Q08\}- A -
(d] @\ xp-1/80\
T (Sta. ~ 7
i case)
.004] ' :
- YV
f1a o : 3
-.004 Sp— -
-.0085 - y

2
i/ k
FIGURE 7, —Case 2. Aileron-deflection (8, #): {(a) Standard case. (b}, (¢), {d) indicate

dependency onrs. Case (d), zg= —0.004, reduces to a point.

1

the 2, against i relation and figure 10 the final result

N2 N2 H
» - . wy Wy
(—— it ), = —4(%
K (w,.r,,b) against 2, (wara) 4(%)

Case 1, which is of importance in the propeller theory,
has been treated in more detail. The quantity F shown

— (il
i figures is v« — -
in the figures is v wurb

Wy,

Figure 11 shows the dependency on%’ o
figure 12 shows the dependency on the location of the
axis a; figure 13 shows the dependency on the radius of
gyration r.=r; and figure 14 shows the dependency
on the location of the center of gravity », for three
different combinations of constants.

EXPERIMENTAL RESULTS

Detaited discussion of the experimental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are
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restricted to wings of a large aspect ratio, arranged with
two or three degrees of freedom in accordance with the

able springs restrain the wing to its equilibrium
position,

T
1.4 - i I I
- T -~ y 1.4 ] —
AN T HEEl
" et 7 I net At —
'/.0 - et {1 -
Ql_ (v) _‘ x I
FEENRN o] - %
F L R
5 SRS B
\ 8 N e e B
i \ B S
'4_#ALA e :,‘,a,f/,*A F -
' | Unstoble
b —— f—- rm - - — 6H—— - — e} {—
i o\
| [ g N\t —t—1— —
0 002 .004 014 i vl
FIGURE 8.--Case 2, Aileron-deliection (8, 4): Final curves giving flutter factor & \ /
against 2 corresponding 1o cases shown in figure 7. 2 - \ //
theoretical cases. The wing is free to move parallel to E— <~
itself in a vertical direction (h); is equipped with an ( ﬁ |
o 4 8 12 16 20
12
o 1 [ T 1 } Q5
! | F1oURE 10.—-Case 1, Flexure-tarsion (h, a): Standard case. Showing flutter factor
17 ‘ ) B = F against $h.
I
1o RS T We shall present results obtained on two wings, both
! . . . .
- AN S AN D RO S of symmetrical cross section 12 percent thick, and with
i chord 2b==12.7 cm, tested at 0°.
80—1-1-— ¢ l S —
!
i ‘ T ] 1.50
60+—1-- -1 l P —
o ‘ ‘
N | B |
| ‘ .00
! | 1
40t . —— }
L } | F
1 i .50
20 - e | |
B O IR HEEEEENE
O s s 2 2 ¥
(2] : Wy S,
L. ‘ I ~ FIGURE 11.—Case 1, Flexure-torsion (h, a): Showing dependency of F on %: The
/ : | upper curve is experimental. Airloil withr= % a= —04;2=0.2; 4x=.01, :—'; variable.
-20}—— e N
| : Wing A, aluminum, with the following constants:
0 2 4 ok & 8 Q 1
4 .| i g -0.4, ra=0.31, 0.173, and 0.038,
Fiauke 0. Case 1, Flexure-torsion (h, o) Standard eaxe,  Showing ¢ against T ‘ 416

axis in roller bearings at (a) (fig. 2) for torsion, and ‘ respectively;

with an aileron hinged at (¢). Variable or exchange- | ot 0033 and we=7X27
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Wing B, wood, with flap, and the constants:

1
k=Top ¢=05 a=-04, 2.=0.192, r7=0.178,
73=0.019, rg?=0.0079, and w. kept constant
=17.6X2r

The results for wing A, case 1, are given in figure 15:
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectivelv. The abscissas are the fre-
quency ratios and the ordinates are the velocities in
cm/sec. Compared with the theoretical results calcu-
lated for the three test cases, there is an almost perfect

3.00 T‘ T
|
2.50
/]
b
D {
2,00 1/ 1
S :
»-\r\ﬂﬁ‘/.
i |
.50 + —
L F
L/
. ’
a
A
1.00 4" e e e
.50 b
J -2 -4 -6
a
FIGURE 12.—Case 1, Flexure-torsion {, a): Showing dependency of F on location
of axis of rotation a. Airfoil with r— 1»11:0,2, . ~Lie 1 a'variable,
2 4 w2 6

agreement in case 1 (fig. 15). Not only is the minimum
velecity found near the same frequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a small value of the velocity to a definite upper
limit.
branch of the curve not only existed but that it was
remarkably definite. A small inerease in speed near
this upper limit would suffice to change the condition
from violent flutter to complete rest, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (figs. 16 and 17).

It was very gratifying to observe that the upper-

The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-

2.00
/.50 —
‘ N
F AR N A \
N N
100F - —+ . - - <
BN
S S ER
L0 T \\
o 5 1.0 .5

r

F1GURE 13.—Case 1, Flexure-torsion (h, a): Showing dependency of F on the radius
of gyration ra=r.

.o

A, airfoil with a= —0.4; A=l; =02 w_1,

1 =76 r variable.

B, airfoil with e= —0.4; x-%3 =02 %:—1,00; r variable.

T
2.50}
| - 4 {
/ /
2.00 :
A B/
/
/ /\
.50+ /
/ /
I' S
//
1.00 oot
\\
‘C\' w,
Ryt — =1,4K=0/
“wa
501
o .2 4 .6
Koy

FIGURE 14.—Case 1, Flexure-torsion (h, a): Showing dependency of F on 14, the
location of the center of gravity.

. I PO S T

A, airfoil with r= 5 =04 U0 e S T variable.
. 1. 1. w .

B. airfoil with Tegia=—04; «= i E%l=- :i 1 x variahle.

C, uirfoil with r==,']T: a=—04;, x= 1.

w?®
06 o 1, T variable.

peat themselves satisfactorily, Next, that the influ-
ence of the internal friction? obviously is quite appreci-

!'This matter is the subject of a paper now in preparation.
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able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the aileron are very low, and no steps were taken to
eliminate the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject

1 T ]
l T [ 37
40 R -
j ﬁ | L ‘eo(a‘
30k [xlpirgr;enfa/ &\
g | Unsq ——[Z
> 20l = =
L 1 | .
AT
S R . e IR
MR HRE
o .2 4 .6 .8 1.0 1.2 1.4

Wy [ W
Figure 15.—Case 1. Wing A, Theoretical and experimental curves giving flutter

velocity ¢ against frequency ratio :2 Deflection-torsion.
-

to temporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiments are seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all cases increase
the speed at which flutter starts.

50

<40

Q30

N 20

/0

0

FIGURE 16.—Case 2. Wing B. Theoretical and experimental curves giving flutter

velocity » against {requency ratio :—:

Alleron-deflection (8, A).

NEERNERREE
B "Experimentol
30 Unstable
y
“ 7
Eeo /Q. i- + / + / :
a Limit very indefinite
a L
10 ol | |
_— — e
1‘ /w/
0 0.4 0.8 L2 1.6 20 2.4 2.8

Wo /w,
FIGURE 17.—Case 3. Theoretical curve giving fAutter velocity against the fre-

wa

quency ratio v The experimental unstable area is indeflnite due to the im-

portance of internal friction at very small velocities. Torslon-aileron (a, 8)
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APPENDIX

EVALUATION OF @5
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